
Events Routing Service for Distributed Applications

Computer Telephony - case study

Bartosz Klimek, Dominik Radziszowski, Krzysztof Zieli�nski

fradzisz, kzg@ics.agh.edu.pl

Dept. of Computer Science, University of Mining & Metallurgy

Al. Mickiewicza 30, 30-051 Cracow, Poland

tel:+48 (12) 617 39 82, fax:+48 (12) 617 39 66

August 5, 2002

Abstract

This paper presents Event Routing Service (ERS) that represents a pattern for lightweight

session between a source and a destination of events establishment and processing. It exploits

CORBA Noti�cation Service at its basics. To illustrate the features of the proposed solu-

tion its application in Computer Telephony has been discussed in details. Most of the ERS

positive features are inherited from Noti�cation Service but its implementation requires a

novel protocol of lightweight session establishment mechanism. The implementation of ERS

is described and its application for routing events in CT system is presented. The paper is

concluded with performance measurement study.

Keywords: distributed applications, noti�cation service, events routing, computer tele-

phony.

Introduction

Most existing systems of automatic redirection of telephone calls employ Call Redirection Module (CRM)

[1] implemented around a standard simple client-server model [2]. With CRM a client is a program which

switches telephone calls, and a server takes care of providing a proper reaction to these calls. Although

these systems work well, they are very limited in terms of performance and adaptation to new services. The

creation of a new service in the CT (Computer Telephony) system very often requires a modi�cation of

the existing code of CRM, especially when more complicated interaction between the CT hardware and the

service is to be realized.

The goal of this paper is to present Event Routing Service (ERS) that represents a pattern for lightweight

session between a source and a destination of events establishment and processing. It exploits CORBA Noti-

�cation Service [3, 4] at its basics. The proposed pattern is general and could be used for many applications.

1

To make the presented investigation more concrete and to illustrate the features of the proposed solution

its application in CT has been discussed in details. Most of the positive features of ERS are inherited from

Noti�cation Service but its application in context of CT events routing requires a novel mechanism of session

establishment and fault-tolerance [5].

In the presented system ERS is well isolated from the underlying hardware by an object oriented library,

CTLIB [6], that provides uniform abstraction of CT telephony cards provided by such vendors as Dialogic

or Picka Technology. It is also separated from application servers providing them with lightweight session

establishment mechanisms over event noti�cation service. The system allows coexistence of a variety of

di�erent services, which will react to incoming calls. Call Center can serve as an example. We can imagine

services interested in other kinds of events, e.g. Billing Service will handle the start and termination of calls

only to record the duration of the call. ERS provides coexistence of many copies (instances) of the given

service. It allows load balancing, simpli�es concurrent processing and increases reliability.

The structure of the paper is as follows. In next section the requirements of event routing service in

CT applications are considered in details. Three di�erent viewpoints: functional, management and fault

tolerance are analyzed. In the following section the ERS architecture is speci�ed and the proposed pattern

of lightweight session establishment and processing is explained. This pattern has been compared to a well

known Session and Abstract Session Patterns [7]. Next the ERS implementation environments is presented

and evaluated. The application of ERS is presented in the following section. The problems of ERS scalability

and exibility is discussed in the last section. The paper ends with conclusions.

Requirements for events routing in CT systems

Functionality of ERS has been de�ned in context of requirements for CT applications, which may be divided

into three groups:

� information about the events generated by CT hardware such as: the appearance of a new call, the

and of playing an audio �le, etc.

� the supply of an interface allowing the control of CT hardware, e.g. switching the call to the given

destination, starting to record a �le, etc.

� the delivery of the information about the given call (state, duration, etc.).

The use case diagram of a typical CT application, called Telephone Exchange Interface (TEI), is shown

in Fig. 1. It speci�es the interaction between two categories of actors i.e.: CT Devices and CT Services.

CT Device generates events and processes commands issued by CT Service in response to received events in

context of external information retrieved from database.

It is easy to notice that events dispatching plays a very important role for this application. It is necessary

to route events to the proper services, however, it cannot be assumed that events should only be obtained by

one service. The mechanism of events distribution to many services supporting events �ltration should be

2

Figure 1: The main use case diagram for TEI subsystem

provided and the events should forward the suitable routing information. The following events dispatching

scenarios should be implemented:

� Sending events to the given service instance (e.g. to the service that handles the call),

� Dispatching events to all instances of the given service type (e.g. when a new call appears),

� Delivering events to all services (e.g. administrative messages).

The system should be equipped with a management interface that makes the dynamic setting of system

services properties possible as well as allows the de�ned events routing scenarios to be realized.

CT applications are typically built of various di�erent independent services. In this case:

� The given call processing should be allocated only to the relevant service or more precisely to the

instance of the service. It is necessary to avoid the situation when several (more than one) services

(instances) try to control the call.

� The authorization of the call processing should be restricted only to the services which handle the

pre-allocated range of number extensions. Such allocation should prevent from conicts and unlimited

access to information.

3

An activity in a distributed environment also requires the implementation of mechanisms which supply

information about the system components accessibility and their state to ensure the proper system faults

handling.

ERS service de�nition

Event Routing Service introduced in this section has been de�ned in the context of CT application require-

ments already de�ned, yet it provides far more general functionality. This is why this service is de�ned in

general terms not related to this particular application. The CT oriented usage will be described by the

mapping ERS components to applications domains objects.

ERS has been designed as an extension of CORBA Noti�cation Service with mechanisms which support

lightweight session establishment and control the events between the source object (producer) and the service

objects instance (consumer). The point is that many applications require a sequence of events generated

from a given source, which has to be processed in the same context i.e. by the same service instance. The

session implementation concept over Noti�cation Service is central to the proposed ERS service.

The proposed solution is similar to the Session pattern [7] which imposes a three-phase protocol upon

the interactions between the source of event, playing the client role, and the server object instance.

� Client sends an initial "request" event to the event routing engine specifying the requested service

parameters. The event is forwarded to all service instance from the pool of active instances. Any free

server instance passes its unique services instance identi�er to the source of the event and in return it

obtains a session identi�er. The service instance with the allocated session identi�er is in a connected

state and ready to accept the events marked with this identi�er.

� During the session period the service instance and session identi�ers are used in the following way:

{ both identi�ers are put to the subsequent events generated by the source of events,

{ service instance identi�er is checked by the events routing mechanism in order to forward an event

to the right destination service instance.

{ session instance identi�er is checked by the destination service instance and the event is processed

only if its instance identi�er is in perfect agreement with the session identi�er earlier received.

� When the client has �nished using the service instance, it sends a �nal "release" event, passing in

the server instance and session identi�ers. On Receiving this event the service instance enters into a

disconnected state and the session identi�er is removed from the instance.

The proposed solution is to some extent similar to the Session pattern [7] in that the event source obtains

a form of the session object pointer by receiving a server object instance identi�er. This object processes

subsequent messages. It di�ers from this pattern by application of a semantic event routing engine to forward

a message to the destination server object. Semantic routing of event messages which implies forwarding the

4

messages based on checking event parameters and then passing them to the right pool of service instances.

It makes the proposed pattern even more general.

The session is called lightweight because the only required common information between the source

and the destination of event is the session identi�er and the event forwarding based communication is

asynchronous. It is enough to ensure that the sequence of messages from the same source is processed by

the same service instance, which could preserve the state between subsequent events processing. The session

identi�er could be passed to another source of events that allows many sources to participate in such de�ned

session. This schema could be further enhanced by the Abstract Session pattern application in which many

sessions have to be served by the same server object.

ERS architecture components

Event Routing Service architecture, which implements the proposed pattern, consists of four basic types of

components:

� Event Source Adapter (ESA),

� Event Routing Service Manager (ERSM),

� Noti�cation Service,

� Event Destination Service (EDS),

depicted in Fig.2.

EDS 1

EDS 2

EDS k

ESA 1

ESA 2

ESA 3

Notification Service

Event Channel

Events flow

ERS protocol

ERSM

Figure 2: ESR architecture

5

The ESA object represents a single device that generates events that have to be served by the selected EDS

object. Noti�cation Service performs events routing between ESA objects and EDS objects and processes

the speci�c ERS events parameters.

The Noti�cation Service [8] provides a mechanism for a more loosely coupled method of communication

between objects, rather than by invoking operations directly. Event suppliers and event consumers are

de-coupled by an event channel which handles supplier registration and broadcast of events to consumers.

The service is an extension to the Event Service [9]. It is the engine of an event-driven system. Its

architecture allows to construct a kind of a virtual bus, with advanced addressing of events sent through

it, including unicast, broadcast and multicast, based on the information contained in the events. This is

particularly interesting for developers of telephony and telecommunication systems, in which events generated

by the hardware may trigger various actions, possibly in many places at once (e.g. logging, billing, gathering

information for statistics purposes).

The events sent through the channels of the Noti�cation Service can be of any IDL type, in particular

they can have a special structure de�ned by OMG called structured event, in which case the spectrum of

possibilities grows.

A very powerful feature of the Noti�cation Service is event �ltering, speci�ed with a constraint language.

It can be easily applied to user-de�ned �elds of various types. It is used to organize the ow of events in our

system, which is quite complex.

ERS exploits the structured events with a few prede�ned attributes proposed by service de�nition pre-

sented later in this section. The values of these attributes are processed by the ESR protocol in collaboration

with ERSM, EDS, and ESA.

ERS components interfaces

The ERS components are equipped with interfaces which enhance the standard Noti�cation Service interfaces

and provide support for the ERS protocol used for session establishment implementation. The session is

represented by session id which is a unique number generated by the ESA object implementation. The

session id is used as a tag parameter for each event generated by the ESA object during the session and

pushed to Noti�cation Service. This tag provides temporal association between the source of events and

the destination object. ESA interface, presented below, provides only two additional operations related to

session id handling.

EDS object is a standard push consumer object. The only di�erence is that it has a built-in logic

of the ERS protocol and implements sophisticated event queuing mechanism. The communication with

EDS is performed via events using standard Noti�cation Service interface [3]. ERSM plays the role of

a central registry of service instances provided by the system. Each service is described by a name and

an instance id. The instance id makes it possible to distinguish diverse instances of the same service

type. It is generated during the service instance registration process and passed back to the EDS object in

Register info structure. The registration procedure should be performed by the EDS object during the

start-up procedure. Other operations of the ERSM interface, shown in Fig. 4, are used for service activity

6

interface ESA f

long get session id(in long service id, in long instance id);

Service Con�guration Seg get con�guration ();

void terminate(in long session id);

g;

Figure 3: ESA interface

testing and the module management.

interface ERSM f

Register info register instance(in ServiceName service name);

void ping(in InstanceId instance id);

Service Con�guration Seg get con�guration ();

oneway restart ();

void shutdown ();

g;

Figure 4: ERSM interface

ERS Protocol

The ERS Protocol implements the lightweight session establishment mechanism. Instead of formal de�nition

of the protocol its sphere of activity will be described. The example of the structure events used by the

proposed ERS protocol are shown in Fig.5, which presents the collaboration diagram of the protocol activity

during the session establishment procedure.

The ESA object opens a new session by sending the event with the type �eld set to New Session value

and service name set to the required service. The �eld call of this event is equivalent with the reference of

the ESA Corba object. This event will be called an opening event. The Noti�cation Service dispatches this

event to all active EDS instances representing this service. The standard �ltering mechanisms are provided

by Noti�cation Service which is its main purpose. Each idle EDS instance 1 ESA object using the obtained

reference by invoking get session id operation with set service id and instance id parameters. Only

one invocation is successful and returns with proper value of session id. The identi�er of the successful

7

ESA EDS
instance_id = 0

 EDS
instance_id =1

Notification Service

1:push(event1)

3:push(event1)

2:push(event1)

4:get_session_id(service_id, 0)

5:get_session_id(service_id, 1)

SUCCESS,
returns
session_id

FAIL
session_id already
assigned

event1:
type: New_Session
service_name: CALL_CENTER
instance_id: null
sequence_number 946100083
call_id: 6173982
reference: ESA_CORBA_Ref

event2:
type: Play_Start
service_name: CALL_CENTER
instance_id: 0
session_id: 1
sequence_number 946100084
call_id: 6173982
.....

event3:
type: End_Session
service_Name: CALL_CENTER
instance_id: 0
session_id: 1
sequence_number: 946100084
call_id: 6173982
....

:
:

6:push(event2)
8:push(event3)

7:push(event2)
9:push(event3)

Figure 5: Example of ESR protocol activity

EDS instance object is used as instance id in subsequent events generated by the investigated ESA object.

This �eld directly points the service instance object during the session. The granted session id plays a role

of a password which authorizes events processing.

If no idle instance of the required service is available, one of the two following scenarios may be chosen

by the application programmer:

� All opening events are destroyed by the busy EDS object instances and there will be no get session

operation invocation. This situation is recognized using the time-out set at the moment when opening

event is generated. If there is no ESA object invocation during the time-out, it means that no service

object is available and that the opening event should be re-sent later.

� The opening event is queued in busy EDS objects and processed in due time. In this case, the late

invocation of get session operation by EDS objects results with only one successful operation. The

other invocations are unsuccessful and create addition overhead.

The choice between these two options are discussed in detail later together with scalability issues.

The proposed protocol may be further re�ned to reduce some scalability problems when many EDS

objects instances are ready to join a service or all objects are busy.

The successful EDS instance either processes receiving events locally or performs operations on EAS

object or any object which references are handed o� by EAS events during the session. It makes EDS

8

possible to play the role of events processing and dispatching engine for the given session.

The session closes with sending the �nal event with type �eld set to End Session value. The EDS object

processes �nal event, sets its status to idle and then it is ready to response for a new session establishment

invitation.

The described EDS Protocol may be seen as a dynamic service allocation procedure which automatically

�nds an available service.

ERS fault-tolerant extension

The ERS fault-tolerant mechanisms exploit the leasing concept based on the following rule - resources are

hired for a speci�ed time. When the user of the resource still wants to use them, they have to ask the

manager of the resource to prolong the hire for another period of time.

Looking at the ERS system, it may be said that service objects hire proxy suppliers from Noti�cation

Service. Periodically services have to inform ERSM that they are still interested in receiving events by

calling ping method on it's interface. ERSM has a time-out set for each instance of a service, if it expires

the appropriate proxy suppliers are destroyed so the instance of a service will not get any more events.

The time-out may happen when CT service is stopped, destroyed or there have been serious communication

problems. The periodical call of ping method is realized by EDA objects automatically - the programmer

does not need to take care of it.

ESA also needs to notify the services whether it is working. This process is performed through an

auxiliary event channel. All service objects listen to this channel, and if so called ping event from ESA

appears, they know that EAS is running and wants them to wait for events and call handling. If ESA pings

do not come on time, all service objects have a time-out set, the communication session is released. The

activity described above is presented in Fig.6

ESA

EDS (1)

other CT services
(CT events consumers)

EDS (2)

CALL
CENTER (1)

CT Aux Channel

Notification Service

other channels

ping

ping

ping

ping
ping

ping

ERSM Startup

ERSM Startup
ping method call

ERSM

Figure 6: Ping 'ow' diagram

This activity is particularly important during the session establishment. The problem is that ESA does

not know how many, if any instances of a given service object are ready for processing. That is why (but

9

not only) ESA has a time-out for each New Session event, and if no instance of a desired service handles

the event before timeout expires, the call is terminated.

The auxiliary channel is also used by ERSM. At ERSM startup, an event informing about this fact is

sent. This event informs each ESA to refresh its con�guration. The service object gets this event too but it

ignores it.

Note that the proper work of ERSM is not required for the system to work if it is already running, so

there is no need to check ERSM activity.

It is also necessary to point out that ERS is using TCP protocol for events delivery (as Noti�cation

Service does), so if the suitable objects are active the message event should not be lost.

ERS Implementation Issues

The requirements for the ERS system motivate to choose the technologies used in building their components

very carefully. In particular, the attention should be drawn to: performance, portability (concerning both

hardware platforms and operating systems), reliability, and exibility.

In the following subsections major implementation decisions and the reasons that have convinced authors

to make them have been described.

Choice of Implementation Environments

The choice of implementation environment has to be considered in the following issues context: (i) Pro-

gramming language, (ii) Distributed programming environment, (iii) Event transport mechanism, and (iv)

Operating systems and hardware dependencies. The general assumption has been that the ERS system has to

be implemented using distributed object oriented technology that is a common standard approach nowadays.

Selection of programming languages

Because authors have attempted to use well known, proved and easily accessible tools, they decided to

implement the system in C++ and Java. There was an option to write all code in Java, however they were

not certain how well the servers would perform, for they must be robust and stable and work continuously

for a long time. The asynchronous nature of garbage collection in Java results in that the usage of CPU

and memory resources change with time. Therefore it was perceived as an disadvantage in a heavily loaded

server processes, because the performance of such servers may periodically go down. This in turn, may make

the whole system unstable. That conclusion led to the decision to implement all core elements in C++ for

e�ectiveness and stability.

On the other hand, C++ programming is more diÆcult and bug-prone than Java, especially when using

high-level, complex environments, such as Common Object Request Broker Architecture (CORBA) [10].

Since the system was intended to be open for extensions and exible, Java has been chosen to implement

the service interface. A very similar interface has been also developed in C++, so that service developers

are not bound to one language.

10

An important advantage of Java is its portability. Nevertheless, the source code of our servers is inde-

pendent of the operating system or hardware and uses only standard ANSI compliant libraries and CORBA.

This means they can be compiled on any platform on which an ANSI C++ compiler and CORBA are avail-

able. Authors are certainly aware of possible slight incompatibilities between various C++ compilers and

libraries.

Choice of distributed programming environment

One of the basic requirement of ERS is the distribution of its components. This is primarily due to its

heterogeneous nature, and the need for load balancing and reliability. At the early phase of the design it

has been decided to use CORBA. Authors found the following features of CORBA to be essential for ERS

system:

� Heterogeneity | there exist mappings from IDL to C++ and Java, while ORB software is available

for all popular platforms [11].

� Existence of basic services, as well as advanced ones, which makes design and implementation easier

and much more e�ective [12, 13, 3, 14].

� High level of abstraction and transparency | most of low-level issues are hidden from the programmer

(e.g. the format of data sent through the network, the location of the server process).

� Support for multi-threaded environment [15, 16].

OmniORB [17] was chosen for ERS system, because it is reliable, robust and available to a variety of

platforms and compilers. The important arguments were also that omniORB is available with documentation

and source code, it is free, and there is a developer's forum dedicated to this product.

Event transport mechanism

Instead of developing a new, speci�c for the application, event delivery service, one of the existing CORBA

Services [8, 18] was proposed. Event Service [12] has been rejected because it doesn't support event �ltering,

which is important for overall ERS system performance. Noti�cation Service [3] has been chosen. Its

functionality allows to use, advanced delivery schemes of sent events, including unicast, broadcast and

multicast, based on the information contained in the events. This is of great import to developers of

telephony and telecommunication software when events generated by the hardware may trigger various

actions, possibly in many places at once (e.g. logging, billing, gathering information for statistics purposes).

Operating systems and hardware platforms

As it has already been mentioned, the ERS code is highly portable, so it can be compiled and run on a variety

of platforms. However, for the development the following platforms have been selected: Windows NT/x86,

Unix, and Linux/x86. The choice of Windows NT/x86 is obvious for many applications. For instance, CT

11

software is often available for x86 platform while interface libraries are accessible only for Windows. It

requires ESA objects implementation over Windows/NT. Authors prefer to use Unix for other parts of the

system because it is generally more exible and stable than Windows NT. The servers run on Solaris/SPARC

or on Linux/x86.

ERS application in CT system

The proposed ERS service has been used for implementation of the CT application. The general require-

ments of this system have already been analyzed. The Telephone Exchange Interface (TEI) is a part of

a computer aided telephone call handling system, CT Service System (CTSS). The TEI system is imple-

mented with object-oriented API wrapper of CT hardware [6]. For each telephone line Abstract Terminal

is created. When a new call arrives Abstract Terminal answers it and calls Call Factory object to create

new Call Impl object. The interface of Call Impl object contains such typical operations as for instance:

start play(), stop play(), start record(), stop record(), get digits(), etc.

The Abstract Terminal object acts as EAS and sends call related events using ESR protocol and Noti�-

cation Service. There has also been built CT System Manager (CTSM) server that implements functionality

of ERSM.

CT-Service class implements logic of the telephone call processing. It receives all events from the asso-

ciated Abstract Terminal object via ESR protocol and performs relevant operations on Call Impl object.

The CT-Service object is registered with CTSM server and identi�ed by the name of a service type. Many

instances of the same service type may be activated and awaiting for a new call.

ERS component CT application component

ESA Call object of TEI

EDS CT-Service

ERSM CTSM

Table 1: Mapping of ERS to CT components

The structure of CT-Service module is presented in Fig.7. The application independent part consists

of StructuredPushConsumer and an implementation of internal Event Queue mechanisms. The applica-

tion dependent part is CT-Service class which also performs the ERS protocol (register instance() and

get session id() calls).

The straightforward mapping of the general ERS terms to the investigated CT-application components

is shown in Table 1.

The internal structure of the CTSM server is almost completely independent of the application. It is a

part of the system which may be reused in other applications.

12

<<Interface>>

{CosNotifyComm}

+disconnect_structured_push_consumer(): void
+Push_structured_event(Notification: StructuredEvent): void

StructuredPushConsumer

StructuredPushConsumer_Impl
{CT_Service_API: CT_Service}

StructuredPushConsumer_Impl(event_queue: Event_Queue)
+disconnect_structured_push_consumer(): void
+push_structured_event(Notification: StructuredEvent): void

Event_node
{CT_Service_API: CT_Service:Event_Queue}

StructuredPushConsumer_Impl(event_queue: Event_Queue)

Event_Queue
{CT_Service_API: CT_Service}

-mutex:Mutex
-not_empty: Condition
- removed: boolean = false

enqueue(event: Event): void
get_event_stream(): Event_Stream
next(timeout: long): Event
more(): boolean
remove():void
remove_all():void
rewind(): void

<<interface>>

{CT_Service_API}

next(timeout: long = -1): Event
more(): boolean
remove():void
remove_all():void
rewind(): void

Event_Stream

CT_Service
{CT_Service_API}

-service_id: long
-instance_id: long
-service_name: string

CT_Service(service_name: string)
run(): void
dispatch_event(event: Event): void
wait_for_event(timeout: long = -1): Event
new_call(event: Event): void
call_terminated(event Event): void
play_finished(event: Event): void
record_finished(event: Event): void
get_event_stream(): Event_Stream
set_event_mask(mask: Event_Mask): void
get_event_mask(): Event_Mask
get_instance_id(): long

Event
{CT_Events}

Event_Mask
{CT_Service_API}

- mask: long = 0xffffffff
enable(event_type: Event_Type): void
enable_all(): void
disable(event_type: Event_Type): void
disable_all(): void
is_enable(event_type: Event_Type): boolean

1 - event_consumer

-event_queue

- event mask
1

- event
1

- event_queue
1

- current
0..1

0..1 -previous 0..1 -last

+next
0..1

Figure 7: CT-Service API - structure

ERS performance and scalability analysis

The ERS service should be evaluated from the performance point of view, where the most important index

is the time of handling typical operations such as: time to join a service by an EDS object, time of an event

delivery, etc. Another important aspect is an overhead caused by the ERS protocol activity under di�erent

load of the application. The performance issue of the proposed service in the state when the session between

ESA and EDS is already established is determined by the implementation of Noti�cation Services. The

performance analysis of this service could be found elsewhere [19, 4].

The ERS protocol activity should be analyzed in two situations: (i) the system is not very busy and many

EDS instances are ready to join the session, (ii) the system is overloaded and no EDS objects is willing to

open a new session. In the �rst situation many EDSes simultaneously perform the get session id operation,

from which only one is successful. It may create an increase of network load in a short period of time and

unnecessary processing overhead on the network node where the ESA process is running. It is not risky,

thought, the system as a rule by principle, is not very busy and it is absolutely ready to cope with this

extensive traÆc.

Otherwise, when EDS objects are very busy they will respond to the invitation for joining a new session

in due time when current processing is �nished or suspended. In this case, the danger of system overload

13

is rather limited. Despite this facts, the number of unnecessary get session id operation calls should be

reduced signi�cantly.

The behavior of the system could be easily improved by grouping EDS objects of the same and delegating

the task of joining sessions to the group representative (GR). The structure of such system is presented in

Fig.8. GR performs get session id operation only when one or more of its EDS objects are idle.

ERSM

Application Event Channel

get_session_id()

get_session_id()

ESA

ESA

EDS

EDS

EDS

EDS

GR

GR

Service Instances Groupe 1

Notification Service

ne
w_c

al
l

new_call

Service Instance Groupe n

register_instance()

Figure 8: ERS with Group Representatives

This almost eliminates the number of unnecessary operations invocations. This e�ect increases the

complexity of the system and prolongs the time of joining a session when the EDS instances which create

a group are spread around many network nodes. In such a case, the hybrid solution, where objects collocated

on the same node have common GR, could be a better solution.

The objective of the performance study has been to evaluate on the lightweight session establishment

mechanism which is essential for the proposed service. Authors have intentionally eliminated from the

experiment all issues related to Noti�cation Services implementation performance not to ERS protocol

characteristics.

The performance study has been performed for the two CT system con�gurations depicted in Fig.9. The

con�guration 2 in contrast to con�guration 1 had Group Representative object, which was processing each

new call event.

The measurement of the number of calls handled per minute has been performed for di�erent number of:

active telephone lines, service instances, and various call duration time. To facilitate the interpretation of the

obtained results all services were of the same type. It has been assumed that the call processing complexity

is represented by the call duration. This was the time after which the service instance had �nished the call

processing. Each line become active immediately after the previous call from this line had been served, that

is terminate () operation had been called on the line adapter ESA interface. This kept the system load on

14

the maximum, so the results obtained represent the maximum performance.

It has also been assumed that each line proxy push consumer, and each service proxy push supplier

had been created with Noti�cation Service before the start of the measurement. Each line adapter object

before the start of the experiment performed also get configuration operation on ERSM interface to obtain

service id of the requested service.

The reported results of the experiments concern a distributed con�guration where Noti�cation Service

and the service instances where running on SUN Enterprise 3000 (3 x 450 MHz UltraSPARC CPU). The

other part of the system, that is the line adapter objects stimulated by TEI, and ERSM has been processed

by an Intel-PC laptop. Both computers were connected by 100Mbps Ethernet.

 Line
 Adapter
 Line
 Adapter
 Line
 Adapter

 Line
 Adapter

Notification Service

Service 1

TEI

ERSM

 No. of active
telephone lines

 No. of
 service
instances

 SUN Enterprice 3000

Service 1

get_session_id()

register

 Line
 Adapter
 Line
 Adapter
 Line
 Adapter

 Line
 Adapter

Notification Service

Service 1

TEI

ERSM

 No. of active
telephone lines

 SUN Enterprice 3000

Service 1

get_session_id()

register

GR
new_
call

Test configuration 1

Test configuration 2

laptop

laptop

Figure 9: Test con�gurations

The results of the experiments have been represented in Fig.10 and Fig.11 for the call duration of 1[ms]

and 1000[ms] to illustrate the most interesting observations.

It is evident that con�guration 1 performance decreases when the number of service instances is greater

than a certain value depending on call duration. For a very short duration time 1[ms], the existence of other

instances which all are not busy creates collisions at the moment of getting instance id. For 1000[ms] study

this e�ect is observed for 5 instances.

15

The system with GR, that is con�guration 2, performs substantially better than con�guration 1. This

system is able to process more than �ve times greater number of calls and shows only rather not dramatic

reduction of performance when the number of telephone lines is substantially lower than the number of

service instances. For longer call duration time the best system behavior was observed when the number

of active lines was close to the number of service instances (see Fig.9). This result can be easily deduced

applying intuition.

Figure 10: Number of calls handled for service delay 1 ms

Figure 11: Number of calls handled for service delay 1000 ms

16

Conclusions

The presented ERS service has provided a valuable framework for structuralization of a very sophisticated

system of events routing and processing in the CT system. This service enhances Noti�cation Service with

the paradigm of the lightweight session establishment. This provides mechanism for events processing in

a well de�ned context of a given session. This places the proposed service between the fully connection

oriented client server model and the completely detached Noti�cation Service.

It has been proved, as far as scalability is concerned, it is crucial to structure the system in groups of

service instances represented by single objects which participate in ERS protocol. The performance study

has shown that the system is able to process a few thousand calls per minute, which satis�es the requirements

of most real applications.

The experience gained from the CT-system development, which uses the proposed ERS service shows

that it is possible to build an eÆcient system. The system which outperforms other systems implementations

using standard client-server paradigm as far as exibility and con�gurability are concerned.

References

[1] Ericsson. Route manager. Technical report, http://www.ericsson.cz/for enterprise/ncc03rou.pdf, 2000.

[2] Andrew S. Tanenbaum. Distributed Operating Systems. Prentice-Hall International Inc., 1995.

[3] Object Management Group. CORBA Noti�cation Service, 1998.

[4] Timothy H. Harrison, Carlos O'Ryan, David L. Levine, and Douglas C. Schmidt. Design and perfor-

mance of a real{time corba event service. IEEE Journal on Selected Areas in Communications. Special

issue on Service Enabling Platforms for Networked Multimedia Systems, June 1997.

[5] Michael R. Lyu. Software Fault Tolerance. John Wiley & Sons Inc., 1995.

[6] Dominik Radziszowski Bartosz Klimek. Object-Oriented, Event-Driven Platform for Distributed Com-

puter Telephony Service. UMM M.Sc. Thesis, 2000.

[7] Nat Pryce. Abstract session. In Pattern Languages of Program Design. Addison-Wesley, 1999.

[8] PrismTech Limited. OpenFusion CORBA Services, Version 1.1. Developer's Guide, 1999.

[9] Douglas C. Schmidt Carlos O'Ryan and J. Russel Noseworthy. Patterns and Performance of a CORBA

Event Service for Large-scale Distributed Interactive Simulations. University of California, Object Sci-

ences Corp., 2001.

[10] Object Management Group. CORBA/IIOP Speci�cation, Revision 2.2, 1998. OMG formal/98-07-03.

[11] Michi Henning and Steve Vinoski. Advanced CORBA programming with C++. Addison Wesley Long-

man, 1999.

17

[12] Object Management Group. Common Object Services { Event Service, 1998.

[13] Object Management Group. Common Object Services { Naming Service, 1998.

[14] Object Management Group. CORBA Messaging Service speci�cation, May 1998. OMG orbos/98-05-05.

[15] Tristan Richardson. The OMNI Thread Abstraction. Olivetti & Oracle Research Laboratory Cambridge,

1997.

[16] Iona Technologies Ltd. Orbix 2.3 programming guide, 1998.

[17] David Riddoch Sai-Lai Lo. The omniORB2 version2.8. User's Guide. AT&T Laboratories Cambridge,

1999.

[18] Iona Technologies Ltd. OrbixTalk 1.2 programmers' guide, 1998.

[19] Douglas Schmidt and Steve Vinoski. Overcoming drawbacks in the omg event service. C++ Report, 10,

June 1997.

18

